11 research outputs found

    Frustration effects in antiferromagnetic molecules: the cuboctahedron

    Full text link
    Frustration of magnetic systems which is caused by competing interactions is the driving force of several unusual phenomena such as plateaus and jumps of the magnetization curve as well as of unusual energy spectra with for instance many singlet levels below the first triplet state. The antiferromagnetic cuboctahedron can serve as a paradigmatic example of certain frustrated antiferromagnets. In addition it has the advantage that its complete energy spectrum can be obtained up to individual spin quantum numbers of s=3/2 (16,777,216 states).Comment: 8 pages, 17 figures, accepted for publication in Polyhedron, proceedings of the ICMM 2008 in Florenc

    Numerically exact and approximate determination of energy eigenvalues for antiferromagnetic molecules using irreducible tensor operators and general point-group symmetries

    Full text link
    Numerical exact diagonalization is the ultimate method of choice in order to discuss static, dynamic, and thermodynamic properties of quantum systems. In this article we consider Heisenberg spin-systems and extend the range of applicability of the exact diagonalization method by showing how the irreducible tensor operator technique can be combined with an unrestricted use of general point-group symmetries. We also present ideas how to use spin-rotational and point-group symmetries in order to obtain approximate spectra.Comment: 10 pages, 11 figures, submitted to Phys. Rev.

    Projection operator approach to spin diffusion in the anisotropic Heisenberg chain at high temperatures

    Full text link
    We investigate spin transport in the anisotropic Heisenberg chain in the limit of high temperatures ({\beta} \to 0). We particularly focus on diffusion and the quantitative evaluation of diffusion constants from current autocorrelations as a function of the anisotropy parameter {\Delta} and the spin quantum number s. Our approach is essentially based on an application of the time-convolutionless (TCL) projection operator technique. Within this perturbative approach the projection onto the current yields the decay of autocorrelations to lowest order of {\Delta}. The resulting diffusion constants scale as 1/{\Delta}^2 in the Markovian regime {\Delta}<<1 (s=1/2) and as 1/{\Delta} in the highly non-Markovian regime above {\Delta} \sim 1 (arbitrary s). In the latter regime the dependence on s appears approximately as an overall scaling factor \sqrt{s(s+1)} only. These results are in remarkably good agreement with diffusion constants for {\Delta}>1 which are obtained directly from the exact diagonalization of autocorrelations or have been obtained from non-equilibrium bath scenarios.Comment: 4 pages, 3 figure

    Approximate eigenvalue determination of geometrically frustrated magnetic molecules

    Full text link
    Geometrically frustrated magnetic molecules have attracted a lot of interest in the field of molecular magnetism as well as frustrated Heisenberg antiferromagnets. In this article we demonstrate how an approximate diagonalization scheme can be used in order to obtain thermodynamic and spectroscopic information about frustrated magnetic molecules. To this end we theoretically investigate an antiferromagnetically coupled spin system with cuboctahedral structure modeled by an isotropic Heisenberg Hamiltonian.Comment: 12 pages, 13 figures, submitted for a special issue of Condensed Matter Physics (CMP

    Heat capacity uncovers physics of a frustrated spin tube

    Get PDF
    We report on refined experimental results concerning the low-temperature specific heat of the frustrated spin tube material [(CuCl2tachH)3Cl]Cl2. This substance turns out to be an unusually perfect spin tube system which allows to study the physics of quasi-one dimensional antiferromagnetic structures in rather general terms. An analysis of the specific heat data demonstrates that at low enough temperatures the system exhibits a Tomonaga-Luttinger liquid behavior corresponding to an effective spin-3/2 antiferromagnetic Heisenberg chain with short-range exchange interactions. On the other hand, at somewhat elevated temperatures the composite spin structure of the chain is revealed through a Schottky-type peak in the specific heat located around 2 K. We argue that the dominating contribution to the peak originates from gapped magnon-type excitations related to the internal degrees of freedom of the rung spins.Comment: 4+ pages, 6 figure

    Application of the finite-temperature Lanczos method for the evaluation of magnetocaloric properties of large magnetic molecules

    Full text link
    We discuss the magnetocaloric properties of gadolinium containing magnetic molecules which potentially could be used for sub-Kelvin cooling. We show that a degeneracy of a singlet ground state could be advantageous in order to support adiabatic processes to low temperatures and simultaneously minimize disturbing dipolar interactions. Since the Hilbert spaces of such spin systems assume very large dimensions we evaluate the necessary thermodynamic observables by means of the Finite-Temperature Lanczos Method.Comment: 7 pages, 10 figures, invited for the special issue of EPJB on "New trends in magnetism and magnetic materials

    Calculating the energy spectra of magnetic molecules: application of real- and spin-space symmetries

    Full text link
    The determination of the energy spectra of small spin systems as for instance given by magnetic molecules is a demanding numerical problem. In this work we review numerical approaches to diagonalize the Heisenberg Hamiltonian that employ symmetries; in particular we focus on the spin-rotational symmetry SU(2) in combination with point-group symmetries. With these methods one is able to block-diagonalize the Hamiltonian and thus to treat spin systems of unprecedented size. In addition it provides a spectroscopic labeling by irreducible representations that is helpful when interpreting transitions induced by Electron Paramagnetic Resonance (EPR), Nuclear Magnetic Resonance (NMR) or Inelastic Neutron Scattering (INS). It is our aim to provide the reader with detailed knowledge on how to set up such a diagonalization scheme.Comment: 29 pages, many figure
    corecore